Submanifolds with constant scalar curvature in a space form
نویسندگان
چکیده
منابع مشابه
RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملSlant submanifolds with prescribed scalar curvature into cosymplectic space form
In this paper, we have proved that locally there exist infinitely many three dimensional slant submanifolds with prescribed scalar curvature into cosymplectic space form M 5 (c) with c ∈ {−4, 4}while there does not exist flat minimal proper slant surface in M 5 (c) with c 6= 0. In section 5, we have established an inequality between mean curvature and sectional curvature of the subamnifold and ...
متن کاملHypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form
Let M be a complete hypersurface with constant normalized scalar curvature R in a hyperbolic space form H. We prove that if R̄ = R + 1 ≥ 0 and the norm square |h| of the second fundamental form of M satisfies nR̄ ≤ sup |h| ≤ n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], then either sup |h| = nR̄ and M is a totally umbilical hypersurface; or sup |h| = n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], and M i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2016.10.033